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Abstract

We present spectral/hp discontinuous Galerkin methods for modelling weakly nonlinear and dispersive water waves,
described by a set of depth-integrated Boussinesq equations, on unstructured triangular meshes. When solving the
equations two different formulations are considered: directly solving the coupled momentum equations and the �scalar
method�, in which a wave continuity equation is solved as an intermediate step. We demonstrate that the approaches are
fully equivalent and give identical results in terms of accuracy, convergence and restriction on the time step. However,
the scalar method is shown to be more CPU efficient for high order expansions, in addition to requiring less storage.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Simulation of nonlinear and dispersive waves are routinely performed in coastal and ocean engineering
for solving problems in the nearshore zone, such as harbour resonance and wave-induced circulation, e.g.
[26,39,48]. This type of simulation is increasingly carried out in the time-domain using numerical models
based on Boussinesq-type equations, sometimes referred to as dispersive shallow water systems. Over
the last decade significant advancement has been made in deriving more and more accurate – and more
complex – Boussinesq-type equations [29,33,31,19,32].
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Boussinesq-type equations are higher order approximations to the nonlinear shallow water equations
(SWE). There is a growing body of work concerning application of high-order Galerkin methods to the
SWE. The motivation being the potential savings in computational time – especially for large-scale prob-
lems involving long-time integration – in combination with the geometrical flexibility of the Galerkin
approach. In 1993, Ma [28] presented the first continuous spectral element model and was soon to be
followed by other spectral element modellers, including [21,41,17]. More recently spectral/hp discontinuous
Galerkin (DG) models have been suggested [12,18,14,16].

The salient feature in DG methods is that the solution is allowed to be discontinuous over elemental
boundaries, while the elements are coupled through the use of continuous so-called numerical fluxes. See
[8] for a general overview and [9] for a review of the Runge–Kutta DG method. Lately DG methods has
been applied to nonlinear and dispersive wave equations, e.g. KdV-type equations [51,49], Schrödinger
equations [50] and Boussinesq-type equations [13,15].

In light of the interest in Boussinesq-type modelling in coastal engineering spectral/hp element methods
have received surprisingly little interest. Despite the fact that the introduction of dispersive terms will re-
quire a higher spatial resolution, typically low-order finite differences [29,33,45,38], or finite elements
[2,1,25,43,47,40] are used. The authors recently outlined a 2D spectral/hp DG model for the Boussinesq
equations [15] – with the restriction of constant depth and periodic boundary conditions. In this work
the concept of a �scalar method� was proposed for treating the dispersive terms arising in these equations.
The motivation behind the scalar method is to reduce the size of the matrix system by introducing the time
rate of change of momentum divergence as a dependent variable – resulting in an Ndof · Ndof scalar Helm-
holtz problem (Ndof denoting total degrees of freedom). This can be compared to the more traditional ap-
proach of solving the coupled momentum equations leading to a 2Ndof · 2Ndof matrix system. On the other
hand, the scalar method requires a variable recovery step and, for the present DG implementation, several
additional numerical flux evaluations.

Thus, in addition to extending the DG Boussinesq model to the more general setting of variable depth
and non-periodic boundary conditions, we in this paper focus on investigating the effect on accuracy and
efficiency of using the scalar method rather than solving the coupled momentum equations. This is done
through examining the eigenspectra of the semi-discretized equations, as well as through numerical exper-
iments. Further, we: (i) consider different elliptic DG formulations for the dispersive part, and (ii) compare
the DG model against a finite difference model in terms of efficiency.

The paper is organised as follows. In Section 2, we present the governing equations. Section 3 is devoted
to the numerical methods and is divided into several subsections dealing with the discrete Galerkin approx-
imations, the advective and dispersive numerical fluxes, boundary conditions, expansion basis, the time
stepping scheme and eigenspectra. In Section 4, we numerically evaluate the accuracy and efficiency of
the models by examining the case of a linear standing wave. Here, we also compare the DG model against
the finite difference model. We present additional computational examples in Section 5. The findings of the
work are then summarised in Section 6.
2. Governing equations

For an incompressible, irrotational and inviscid fluid the wave motion is described by the Laplace
equation with appropriate boundary conditions. A major difficulty in solving the full problem is that
the location of the water surface – which is a boundary – is a priori unknown, giving that the domain
in which the equations are to be solved is also unknown. The moving boundary problem of the free
surface can be avoided by using the Boussinesq approach, i.e., expanding the velocity potential in powers
of the vertical coordinate and integrating the Laplace equation over the water depth. By using the
Boussinesq approach a simpler problem that approximates the full problem, expressed only in the
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horizontal dimensions, is obtained. The Boussinesq equations used in this study are valid for d/L0 6 0.22,
where d is the water depth and L0 is the deep water wavelength [29] (the traditional deep water limit
corresponds to d/L0 = 0.5).

We write the Boussinesq equations [34] in terms of conservative variables as
otUþ otDðUÞ þ r � FðUÞ ¼ SðUÞ; ð1Þ
in which F(U) = [E(U),G(U)]T is the flux vector and
U ¼
H

Hu

Hv

264
375; D ¼

0

ðd3=6Þoxðr � ðHu=dÞÞ � ðd2=2Þoxðr � ðHuÞÞ
ðd3=6Þoyðr � ðHu=dÞÞ � ðd2=2Þoyðr � ðHuÞÞ

264
375; ð2aÞ

E ¼
Hu

Hu2 þ gH 2=2

Huv

264
375; G ¼

Hv

Huv

Hv2 þ gH 2=2

264
375. ð2bÞ
The vector U contains the conserved variables, where H(x, t) = f(x, t) + d(x) is the total water depth, d(x) is
the still water depth and f(x, t) is the free surface elevation. u = [u(x, t), v(x, t)]T denotes the depth-averaged
velocities in the x- and y-direction, respectively. The acceleration of gravity is denoted by g. We note that
the SWE are recovered if D ” 0. In this paper the source term S(U) accounts for forcing due to bed slopes,
i.e.
S ¼
0

gHSx
0

gHSy
0

264
375; ð2cÞ
where Sx
0 and Sy

0 are the bed slopes in the x- and y-direction, respectively.
Expanding the parenthesis in the dispersive terms, leads to
otD ¼
0

�ðd2=3Þoxðr � otðHuÞÞ � ðd=6Þoxdðr � otðHuÞÞ � ðd3=6Þoxððrd � otðHuÞÞ=d2Þ
�ðd2=3Þoyðr � otðHuÞÞ � ðd=6Þoydðr � otðHuÞÞ � ðd3=6Þoyððrd � otðHuÞÞ=d2Þ

264
375. ð3Þ
We write the dispersive term as otD(U) = otD
m(U) + Ds(U), where
DmðUÞ ¼
0

�ðd2=3Þoxðr � ðHuÞÞ � ðd=3Þoxdðr � ðHuÞÞ
�ðd2=3Þoyðr � ðHuÞÞ � ðd=3Þoydðr � ðHuÞÞ

264
375 ð4Þ
and, using the mild-slope assumption,
DsðUÞ ¼
0

ðdoxd=6ÞoytðHvÞ � ðdoyd=6ÞoxtðHvÞ
ðdoyd=6ÞoxtðHuÞ � ðdoxd=6ÞoytðHuÞ

264
375. ð5Þ
Now, we apply the linear long wave approximation
otðHuÞ � �gdrf; ð6Þ

to rewrite the Ds terms as
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DsðUÞ ¼
0

ðdoxd=6Þoyð�gdoyfÞ � ðdoyd=6Þoxð�gdoyfÞ
ðdoyd=6Þoxð�gdoxfÞ � ðdoxd=6Þoyð�gdoxfÞ

264
375. ð7Þ
3. Numerical schemes

The most obvious way to solve the Boussinesq equations is to directly discretize (1) and solve the coupled
momentum equations (from here on referred to as the coupled method) as outlined in Section 3.2. An alter-
native way is to use the scalar method as discussed in Section 3.3.

3.1. Preliminaries

Let Th be a partition of the domain X into N triangular elements Te. The element Te has a boundary
oTe. For each element we denote the diameter of Te with he and set h = max(h1,h2, . . .,hN). We also define
the following discrete spaces
Vd ¼ v 2 L2ðXÞ : vjTe
2 PP ðTeÞ; 8Te 2 Th

� �
; ð8aÞ

Wd ¼ w 2 ðL2ðXÞÞ2 : wjTe
2 ðPP ðTeÞÞ2; 8Te 2 Th

n o
; ð8bÞ
where PP ðTeÞ is the space of polynomials of degree at most P in the element Te.
The variables will be approximated using a polynomial expansion basis /pq(n1,n2). For an arbitrary

function f(x, t) the approximation fd 2 Vd reads
fdðx; tÞ ¼
XP
p¼0

XP�p

q¼0

~f pqðtÞ/pqðn1; n2Þ; x 2 Te; ð9Þ
where ~f pqðtÞ are the local expansion coefficients. The orthogonal modal basis /pq used in the current work is
discussed in Section 3.6.

3.2. Coupled method

The variational form of Eq. (1) is obtained by approximating U with a polynomial expansion Ud 2 Vd,
multiplying with a test function qd 2 Vd and integrating over the element Te
Z

Te

qdot Ud þDmðUdÞð Þdxþ
Z
Te

qdD
sðUdÞdxþ

Z
Te

qdðr � FðUdÞÞdx ¼
Z
Te

qdSðUdÞdx. ð10Þ
Integration by parts gives the weak formulation
Z
Te

qdot Ud þDmðUdÞð Þdxþ
Z
Te

qdD
sðUdÞdx�

Z
Te

rqd � FðUdÞdxþ
Z
oTe

qdðFðUdÞ � nÞdS

¼
Z
Te

qdSðUdÞdx; ð11Þ
where n = [nx,ny]
T is the outward unit normal to oTe. We exchange the flux F(Ud) in the boundary term

with a numerical flux denoted with a hat, F̂ðUdÞ, defined in Section 3.4.1. Integrating by parts once more
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and we can write the discrete DG formulation as: find Ud 2 Vd such that for all qd 2 Vd and for all
Te 2 Th
Z

Te

qdot Ud þDmðUdÞð Þdxþ
Z
Te

qdD
sðUdÞdxþ

Z
Te

qd r � FðUdÞð Þdx

þ
Z
oTe

qd F̂ðUdÞ � FðUdÞ
� �

� n
� �

dS ¼
Z
Te

qdSðUdÞdx. ð12Þ
Introducing the auxiliary variable a = $ Æ (Hu) we rewrite the Dm
ðiÞ (i = 1,2,3) term as a first-order

system:
Dm
ð2;3ÞðUÞ ¼ �cra� 2Ca; ð13aÞ

a ¼ r � ðHuÞ; ð13bÞ
where c(x) = d(x)2/3 and C(x) = d(x)$d(x)/6. The integral containing Dm in Eq. (12) is thus evaluated
as
 Z

Te

qdD
m
ð2;3ÞðUdÞdx ¼ �

Z
Te

qdcdrad dx�
Z
oTe

qdcdðâd � adÞndS � 2

Z
Te

qdCdad dx; ð14aÞZ
Te

qdad dx ¼
Z
Te

qdðr � ðHuÞdÞdxþ
Z
oTe

qd ðcHu Þd � ðHuÞd
� �

� n
� �

dS; ð14bÞ
where the dispersive numerical fluxes âd and ðcHu Þd will be discussed in Section 3.4.2. As an aside we note
that at the discrete level ad in (14b) is directly substituted into (14a) and therefore does not need to be explic-
itly solved.

By introducing a further auxiliary variable b = �gd$f we likewise rewrite the Ds
i term as
Ds
ð2ÞðUÞ ¼ Cð1Þoybð2Þ � Cð2Þoxbð2Þ; ð15aÞ

Ds
ð3ÞðUÞ ¼ Cð2Þoxbð1Þ � Cð1Þoybð1Þ; ð15bÞ

b ¼ �gdrf. ð15cÞ
Hence the integral containing Ds in Eq. (12) is evaluated as
Z
Te

qdD
s
ð2ÞðUdÞdx ¼

Z
Te

qdCð1Þdoybð2Þd dxþ
Z
oTe

qdCð1Þdðb̂ð2Þd � bð2ÞdÞny dS

�
Z
Te

qdCð2Þdoxbð2Þd dx�
Z
oTe

qdCð2Þdðb̂ð2Þd � bð2ÞdÞnx dS; ð16aÞZ
Te

qdD
s
ð3ÞðUdÞdx ¼

Z
Te

qdCð2Þdoxbð1Þd dxþ
Z
oTe

qdCð2Þdðb̂ð1Þd � bð1ÞdÞnx dS

�
Z
Te

qdCð1Þdoybð1Þd dx�
Z
oTe

qdCð1Þdðb̂ð1Þd � bð1ÞdÞny dS; ð16bÞZ
Te

qdbd dx ¼ �g
Z
Te

qdddrfd dx� g
Z
oTe

qdddðf̂d � fdÞndS; ð16cÞ
where once again the additional dispersive fluxes f̂d and b̂d will be discussed in Section 3.4.2.
Following the standard Galerkin formulation the test functions qd are represented by /pq. We denote the

global mass matrix withM and the global weak derivative matrices with Dx and Dy. In the derivative matrices
we incorporate the numerical fluxes, and the superscripts a and d are used to distinguish between advective
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and dispersive numerical fluxes. If we for simplicity of presentation consider the constant depth case the
coupled system can be written in matrix form as
M 0 0

0 M� cDd
xx �cDd

xy

0 �cDd
yx M� cDd

yy

264
375 ot ~H

otðfHuÞ
otðfHvÞ

264
375 ¼

�Da
x
~Eð1Þ �Da

y
~Gð1Þ

�Da
x
~Eð2Þ �Da

y
~Gð2Þ

�Da
x
~Eð3Þ �Da

y
~Gð3Þ

2664
3775. ð17Þ
Here Dd
xx ¼ Dd

xM
�1Dd

x, D
d
xy ¼ Dd

xM
�1Dd

y, D
d
yx ¼ Dd

yM
�1Dd

x and Dd
yy ¼ Dd

yM
�1Dd

y. We observe that with a
suitable choice of basis functions, see Section 3.6, the mass matrix is diagonal for regular shaped triangles.

3.3. Scalar method

In the scalar method we begin by formally grouping the mixed derivatives with the time derivatives. All
terms not containing any time derivative are collected into the term f(U). We write Eq. (1) as
fðUÞ ¼ �DsðUÞ � r � FðUÞ þ SðUÞ; ð18aÞ
@tUþ @tD

mðUÞ ¼ f ðUÞ. ð18bÞ
The DG method for computing f(U) is stated as: find fðUdÞ 2 Vd such that for all qd 2 Vd and for all
Te 2 Th
Z

Te

qdfðUdÞdx ¼ �
Z
Te

qdD
sðUdÞdx�

Z
Te

qdðr � FðUdÞÞdx�
Z
oTe

qdððF̂ðUdÞ � FðUdÞÞ � nÞdS

þ
Z
Te

qdSðUdÞdx; ð19Þ
where the dispersive Ds term is treated as in the coupled method in Section 3.2.
As there are no dispersive terms present in the continuity equation, we write the remaining components

of Eq. (18b) as
otðHuÞ � crðr � otðHuÞÞ � 2Cr � otðHuÞ ¼ fð2;3ÞðUÞ. ð20Þ
Introducing the time rate of change of momentum divergence as a new scalar variable, i.e., z = $ Æ ot(Hu),
an equivalent statement to problem (20) is
otðHuÞ ¼ crzþ 2Czþ fð2;3ÞðUÞ; ð21aÞ
z�r � otðHuÞ ¼ 0. ð21bÞ
Substituting (21a) into (21b), we obtain an advection–diffusion type equation
r � ðcrzÞ þ r � ð2CzÞ � z ¼ �r � fð2;3ÞðUÞ. ð22Þ
Eq. (22) constitute a �wave continuity equation� [27] for the Boussinesq equations. To solve (22) we
can rewrite the equation as a first-order system by introducing the auxiliary variables w = c$z and
v = 2Cz, i.e.
r � wþr � v� z ¼ �r � fð2;3ÞðUÞ; ð23aÞ
w ¼ crz; ð23bÞ
v ¼ 2Cz. ð23cÞ
The DG formulation finally reads: find ðzd;wd; vdÞ 2 Vd �Wd �Wd such that for all
ðsd; rd; tdÞ 2 Vd �Wd �Wd and for all Te 2 Th
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Z
Te

sdðr � wdÞdxþ
Z
oTe

sdððŵd � wdÞ � nÞdS þ
Z
Te

sdðr � vdÞdxþ
Z
oTe

sdððv̂d � vdÞ � nÞdS �
Z
Te

sdzd dx

¼ �
Z
Te

sdðr � fð2;3ÞðUdÞÞdx�
Z
oTe

sdððf̂ð2;3ÞðUdÞ � fð2;3ÞðUdÞÞ � nÞdS; ð24aÞZ
Te

rd � wd dx ¼
Z
Te

rd � cdrzddxþ
Z
oTe

ðrdcdðẑd � zdÞÞ � ndS; ð24bÞZ
Te

td � vd dx ¼ 2

Z
Te

ðtd � CdÞzd dx. ð24cÞ
At the discrete level the right-hand side of (24b) and (24c) are decoupled at the elemental level and so the
auxiliary variables wd and vd can be substituted into (24a) to recover the primal form of the equation. The
f(2,3)(Ud) term is discretely evaluated by the solution of Eq. (19). We recover the original variables by sub-
sequently solving the discrete problem (21a): find ðHuÞd 2 Wd such that for all td 2 Wd and for allTe 2 Th
Z

Te

td � otðHuÞd dx ¼
Z
Te

ðtd � cdrzdÞdxþ
Z
oTe

ðtdcdðẑd þ zdÞÞ � ndS þ 2

Z
Te

ðtd � CdÞzd dx

þ
Z
Te

td � fð2;3ÞðUdÞdx. ð25Þ
To summarise the scalar method: at every time step (or sub step) nk do

� compute f(Ud) from Eq. (19);
� compute zd using Eqs. (24a)–(24c);
� return to ot(Hu)d by Eq. (25);
� advance to the next time level nk+1 using the explicit time stepping scheme in Section 3.7.

As the mass matrix in general is diagonal, solving (19) and (25) are relatively cheap.
For the constant depth case the scalar method corresponds to solving the following global matrix

systems
M 0 0

0 M 0

0 0 M

264
375

~fð1Þ
~fð2Þ
~fð3Þ

2664
3775 ¼

�Da
x
~Eð1Þ �Da

y
~Gð1Þ

�Da
x
~Eð2Þ �Da

y
~Gð2Þ

�Da
x
~Eð3Þ �Da

y
~Gð3Þ

2664
3775; ð26aÞ

ðcDd
xx þ cDd

yy �MÞ~z ¼ �Dd
x
~fð2Þ �Dd

y
~fð3Þ; ð26bÞ

M 0 0

0 M 0

0 0 M

264
375 ot ~H

otðfHuÞ
otðfHvÞ

264
375 ¼

M~fð1Þ

cDd
x~zþM~fð2Þ

cDd
y~zþM~fð3Þ

2664
3775. ð26cÞ
3.4. Numerical fluxes

In order to enforce a suitable inter-elemental coupling the numerical fluxes need to be defined. In doing
so we distinguish between the advective numerical flux and the dispersive numerical fluxes. We introduce a
notation of subscripts L and R. The subscript L stands for left-hand state of the element boundary, which is
assumed to be internal to the element. The subscript R denotes the right-hand state, which is internal to the
adjacent element.
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3.4.1. Advective numerical flux

Throughout this study we use the contact wave modified Harten–Lax–van Leer (HLLC) Riemann solver
with the two-rarefaction assumption [42]. This flux was numerically shown in [14] to give optimal conver-
gence of P + 1 for the SWE.

Introducing the rotation matrix and its inverse
T ¼
1 0 0

0 nx ny
0 �ny nx

264
375; T�1 ¼

1 0 0

0 nx �ny
0 ny nx

264
375; ð27Þ
we can define Q = TUd = [H,Hu^,Hui]T, where u^ and ui are the velocities in the direction normal and tan-
gential to the edge, respectively. The advective flux can now be written as
F̂ðUdÞ � n ¼ T�1ÊðQÞ. ð28Þ

The HLLC flux is given by [42]
ÊðQÞ ¼

EðQLÞ if SL P 0;

EðQLÞ þ SLðQ�L �QLÞ if SL 6 0 6 S�;

EðQRÞ þ SRðQ�R �QRÞ if S� 6 0 6 SR;

EðQRÞ if SR 6 0;

8>>><>>>: ð29Þ
where Q*L and Q*R are obtained from
Q�ðL;RÞ ¼ H ðL;RÞ
SðL;RÞ � u?ðL;RÞ

SðL;RÞ � S�

 ! 1

S�

ukðL;RÞ

264
375. ð30Þ
The wave speeds are estimated as [42]
SL ¼ u?L �
ffiffiffiffiffiffiffiffiffi
gHL

p
sL; ð31Þ

SR ¼ u?R þ
ffiffiffiffiffiffiffiffiffi
gHR

p
sR; ð32Þ

S� ¼
SLHRðu?R � SRÞ � SRHLðu?L � SLÞ

HRðu?R � SRÞ � HLðu?L � SLÞ
; ð33Þ
where
sðL;RÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH 2

� þ H �H ðL;RÞÞ=ð2H 2
ðL;RÞÞ

q
if H � > H ðL;RÞ;

1 if H � 6 H ðL;RÞ.

(
ð34Þ
The water depth in the star region, H*, is approximated by the two-rarefaction Riemann solver
H � ¼
1

g
1

2
ð
ffiffiffiffiffiffiffiffiffi
gHL

p
þ

ffiffiffiffiffiffiffiffiffi
gHR

p
Þ þ 1

4
u?L � u?R
� �� 	2

. ð35Þ
3.4.2. Dispersive numerical fluxes

In [15], the scalar approach was used and the dispersive flux was evaluated using the Bassi–Rebay (BR)
flux [4]. Although exponential convergence was numerically demonstrated, for elliptic problems the BR flux
is known to give sub-optimal convergence for odd P [22]. Furthermore, the BR method uses quite a wide
stencil, 10 elements in the two-dimensional case.
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In 1998, Cockburn and Shu [7] generalised the method of Bassi and Rebay and constructed the local
discontinuous Galerkin (LDG) method. The LDG method employs a different flux and includes a penalty
term. Setting the flux to be alternating, i.e., upwinding ẑ and downwinding ŵ, or vice versa – the method
gives optimal convergence for both odd and even P and a stencil that is at most 6 elements wide.

In this study, we will examine the influence on different choices of dispersive flux. In addition to the two
methods mentioned above we will examine a stabilized version of the BR flux (sBR), in which we have
introduced a penalty term.

We introduce the notation described in [3], i.e., let { Æ } denote averaging across the element boundary
and s Æ b denote the jump over the element boundary. For an arbitrary scalar function f we have
Table
The flu

Metho

BR
sBR
LDG
ff g ¼ 1

2
fL þ fRð Þ; sf t ¼ ðfL � fRÞn ð36Þ
and for an arbitrary vector-valued function f
ffg ¼ 1

2
ðfL þ fRÞ; sft ¼ ðfL � fRÞ � n. ð37Þ
The numerical fluxes associated with the different DG methods are presented in Table 1. In the penalty
terms g P 0 denotes the stabilisation parameter. The stability and conditioning of elliptic operators with
respect to this parameter has been investigated by Castillo [6] and Sherwin et al. [36]. We observe that
sBR is equal to LDG with b = 0, giving a 10 element stencil. Additionally, setting g = 0 gives the BR for-
mulation. For an upwind/downwind LDG flux we note that, as the Boussinesq equations allow multi-direc-
tional wave propagation, the implicit matrix becomes time-dependent. We, however, disregard the time
dependency and construct the implicit matrix as if the flow was constant over time in a pre-defined direction
D. Hence, the factor b in the LDG flux is given by: if D Æ n > 0, then b Æ n = 1/2; otherwise b Æ n = �1/2.

The additional dispersive numerical fluxes f̂d and b̂d present in the Ds term (16a)–(16c) are evaluated
using the BR flux. The f̂ð2;3ÞðUÞd terms in Eq. (24a) are calculated using averaging.

3.5. Boundary conditions

Generally, boundary conditions are imposed through the numerical fluxes by setting the right-hand state
to a specific value. We first note that all boundary conditions arising from the Dm term are treated as Neu-
mann conditions:
ŵd ¼ wN; v̂d ¼ vN; ðcHu Þd ¼ ðHuÞN; ẑd ¼ zL; âd ¼ aL on oXN. ð38Þ

At slip wall boundaries we have the impermeability condition u Æ n = 0, implemented by setting the right-
hand state to
HR ¼ HL; fR ¼ fL; u?R ¼ �u?L ; ukR ¼ ukL; b?R ¼ �b?L ; bkR ¼ bkL; ð39Þ

as well as imposing wN ¼ vN ¼ ðHuÞN ¼ 0.

For inflow/outflow boundaries we can simply impose the a priori known values at the right-hand state and
for wN, vN and ðHuÞN. However, in many cases the numerical model is �cold-started� from a motionless
1
xes for the dispersive part (âd and ðcHu Þd are analogously defined)

d ẑd ŵd

{zd} {wd}
{zd} {wd}�(g/h)szdb
{zd} + b Æ szdb {wd}�bswdb�(g/h)szdb
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initial condition. Hence, in order to minimise the numerical noise created during the cold-start we have
adopted the approach of relaxation zones. This approach has been reported to work satisfactorily for
highly dispersive Boussinesq equations [32]. Inside the relaxation zones the primitive variables are given as:
ur ¼ crud þ ð1� crÞup; ð40aÞ
fr ¼ crfd þ ð1� crÞfp; ð40bÞ
where 0 6 cr(x) 6 1 is the relaxation coefficient, up(x, t) and fp(x, t) are the prescribed values, while ur(x, t)
and fr(x, t) are the redefined values inside the relaxation zone. Open boundaries are given by (40a) and (40b)
setting the prescribed values to be zero.

3.6. Expansion basis

As mentioned above, the variables are approximated using a polynomial expansion basis /pq(n1,n2),
such that
fdðx; tÞ ¼
XP
p¼0

XP�p

q¼0

~f pqðtÞ/pqðn1; n2Þ; x 2 Te; ð41Þ
where ~f pqðtÞ contains the local degrees of freedom expansion coefficients.
The orthogonal hierarchical basis /pq(n1,n2) in a standard triangular region {�1 6 n1,n2;n1 + n2 6 0} is

based on a collapsed coordinate [22] which is generated through the transformation (n1,n2) ! (g1,g2) given
by:
g1 ¼ 2
ð1þ n1Þ
ð1� n2Þ

� 1; g2 ¼ n2. ð42Þ
This collapsed coordinate transformation can be interpreted as a mapping to a standard quadrilateral
region from the standard triangular region.

An orthogonal basis on these coordinates has been independently derived in a range of works including
[35,23,11]. Following the formulation in [11,22], the expansion modes /pq are defined in terms of principal
functions ~w

a

pðzÞ and ~w
b

pqðzÞ as
/pqðn1; n2Þ ¼ ~w
a

pðg1Þ~w
b

pqðg2Þ. ð43Þ
The principal functions are
~w
a

pðzÞ ¼ P 0;0
p ðzÞ; ~w

b

pqðzÞ ¼
1� z
2

� 	p

P 2pþ1;0
q ðzÞ; ð44Þ
where P a;b
p ðzÞ denotes the pth order Jacobi polynomial.

3.7. Time stepping and eigenspectra

In spectral/hp formulations advective terms are usually handled explicitly in time, while diffusive terms
typically are treated implicitly. This is due to the rapid growth of the spectral radius, OðP 4Þ, of the weak
Laplacian operator [22]. This implies that the Ds term, which contains second-order spatial derivatives,
ought to be treated implicitly in time. However, the grouping of the third-order mixed derivatives with
the first-order time derivatives causes the spectral radius to grow as OðP 2Þ, as will be shown below. The
restriction on the explicit time step will therefore be of the same order as if only advective terms were pres-
ent. Thus we can use a standard explicit time-stepping scheme, in this work we have adopted the explicit
third-order TVD Runge–Kutta scheme [9].



576 C. Eskilsson, S.J. Sherwin / Journal of Computational Physics 212 (2006) 566–589
We write the Boussinesq equations in quasi-linear form
otðUþDmðUÞÞ þDsðUÞ þ AðUÞoxUþ BðUÞoyU ¼ SðUÞ. ð45Þ

Here A(U) and B(U) are the Jacobians of the flux functions
AðUÞ ¼
0 1 0

c2 � u2 2u 0

�uv v u

264
375; BðUÞ ¼

0 0 1

�uv v u

c2 � v2 0 2v

264
375; ð46Þ
in which c ¼
ffiffiffiffiffiffiffi
gH

p
is the long-wave speed. Writing Eq. (45) as Xot ~Ud ¼ Y~Ud we are interested in the behav-

iour of the eigenvalues, k, of the semi-discrete operator X�1Y (in order to simplify the procedure we eval-
uate the advective flux in this section by component-wise averaging).

We will consider the case of a sinusoidal wave in a periodic domain of size [�1 6 x,y 6 1]. The wave has
a wavelength of 20 m and the water depth is 5 m, giving a d/L0 ratio of 0.22. The amplitude is set to 0.1 m
and the bed slope in the wave direction is 1:30 (as the slope is mild we further simplify and treat d and $d as
constants). The domain is discretized into two triangles, where one triangle is in the standard space, and we
will examine wave directions at different h angles to the horizontal (see Fig. 1).
(-1, -1) (1,-1) 

(1, 1)(-1, 1)

Wave direction

q

Fig. 1. The wave propagates at the angle h to the horizontal in the periodic domain.
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Fig. 2. The maximum eigenvalue of X�1Y using the BR flux: (a) coupled method and (b) scalar method.
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Fig. 2 shows the maximum spectral radius, using the BR flux, for the scalar and coupled methods. As
evident from Fig. 2, the maximum eigenvalues are identical, illustrating the equivalence of the two solution
approaches. The maximum eigenvalues occurs at h = 45� which corresponds to the shortest distance across
the triangular elements.

In Fig. 3, we illustrate the growth of the maximum eigenvalue for the different dispersive flux formula-
tions, using the scalar method (h = 45�). Regardless of flux formulation the growth rate is of OðP 2Þ. For the
sBR flux the eigenvalues are highly dependent on g, a large g gives a larger maximum eigenvalue. For
the LDG flux the dependence is less significant. As a larger eigenvalue implies a harsher restriction on
the explicit time step the BR flux permits the largest time step of the three fluxes considered.
4. Accuracy and efficiency

In this section, we numerically examine the influence of the choice of: (i) solution approach; and (ii) dis-
persive fluxes on the convergence rate and CPU time.

Consider the simple case of a linear standing wave in a frictionless rectangular basin of constant depth.
The analytic solution can be written as:
Hðx; tÞ ¼ d þ a cosðkxÞ cosðxtÞ; ð47aÞ

uðx; tÞ ¼ a
x
kd

sinðkxÞ sinðxtÞ; ð47bÞ

vðx; tÞ ¼ 0; ð47cÞ
where a is the amplitude and k is the wave number. The frequency x is obtained from the linear dispersion
equation
x2

gdk2
¼ 1

1þ ð1=3ÞðkdÞ2
. ð48Þ
The dimension of the basin is L · L/2, where L = 100 m is the wavelength. The still water depth of the basin
is set to d = 25 m, giving d/L0 � 0.22. We compute one wave period, using 10 000 time steps, for a standing
wave with an amplitude of 0.1 m using the linearised Boussinesq equations. Three structured meshes having
16, 64 and 256 evenly distributed elements are used.
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The resulting matrix systems are solved using the sparse matrix solver UMFPACK [10] and we measure
the accuracy in the L2 and L1 norms. In comparing the computational efficiency and storage requirement
we will use the scalar approach with BR flux as reference. We therefore introduce the ratios
Table
Error

Norm

L2

L1
rðNnzÞ ¼ N nz=N ref
nz ; rðCPUÞ ¼ CPU=CPUref ; ð49Þ
where Nnz denotes the number of non-zero entries in the implicit matrix and CPU is simply the computa-
tional time measured in seconds.

4.1. Coupled versus scalar method

We start by comparing the coupled and scalar methods using the BR fluxes. The L2 and L1 errors and
order of convergence are presented in Table 2. We see no difference between the two approaches in terms of
accuracy and convergence. Indeed, the results are identical, as could be expected from the eigenspectra
analysis.

From the difference in size of the implicit matrices we would expect the storage requirement of the cou-
pled method to be at most four times the scalar method. However, from Table 3 we see that for the present
case the coupled method requires three times the storage of the scalar method. This is simply due to the use
of structured meshes aligned along the Cartesian axes – otherwise a ratio of four is obtained.

From Table 3, we see that for linear expansions the coupled method is the computationally most efficient
approach, but for P P 2 the scalar method requires less CPU time. Importantly, the computational
efficiency of the scalar method is seen to increase with increasing expansion order.

4.2. Influence of dispersive flux

In this section, we use the scalar method. For the sBR and LDG fluxes we have taken a stabilisation
factor of g = 100. The error and order of convergence are presented in Table 4. The choice of dispersive
2
and order of convergence for the H-component using the scalar and coupled methods with BR flux

Method P N = 16 N = 64 N = 256

Error Error Order Error Order

Scalar/BR 1 1.1226E � 02 2.6768E � 03 2.07 5.8530E � 04 2.19
2 1.3230E � 03 1.9539E � 04 2.76 2.5891E � 05 2.92
3 1.0811E � 04 6.6072E � 06 4.03 8.3836E � 07 2.98
4 1.0052E � 05 3.3676E � 07 4.90 1.0690E � 08 4.98

Coupled/BR 1 1.1226E � 02 2.6768E � 03 2.07 5.8530E � 04 2.19
2 1.3230E � 03 1.9539E � 04 2.76 2.5891E � 05 2.92
3 1.0811E � 04 6.6072E � 06 4.03 8.3836E � 07 2.98
4 1.0052E � 05 3.3676E � 07 4.90 1.0690E � 08 4.98

Scalar/BR 1 1.7617E � 02 5.6046E � 03 1.65 1.2268E � 03 2.19
2 3.0141E � 03 3.9179E � 04 2.94 5.5468E � 05 2.82
3 2.8636E � 04 2.5172E � 05 3.51 2.6100E � 06 3.27
4 3.3832E � 05 8.7677E � 07 5.27 2.9137E � 08 4.91

Coupled/BR 1 1.7617E � 02 5.6046E � 03 1.65 1.2268E � 03 2.19
2 3.0141E � 03 3.9179E � 04 2.94 5.5468E � 05 2.82
3 2.8636E � 04 2.5172E � 05 3.51 2.6100E � 06 3.27
4 3.3832E � 05 8.7677E � 07 5.27 2.9137E � 08 4.91



Table 3
Ratios of Nnz and CPU time between the coupled and scalar methods using the BR flux

P N = 16 N = 64 N = 256

r(Nnz) r(CPU) r(Nnz) r(CPU) r(Nnz) r(CPU)

1 3.01 0.71 2.88 0.91 3.00 0.91
2 2.99 1.38 3.00 1.53 3.00 1.56
3 3.00 1.60 2.99 2.00 3.00 1.99
4 3.00 2.54 2.99 2.56 2.99 2.30

Table 4
Error and order of convergence for the H-component using the scalar method with different dispersive fluxes

Norm Method P N = 16 N = 64 N = 256

Error Error Order Error Order

L2 Scalar/BR 1 1.1226E � 02 2.6768E � 03 2.07 5.8530E � 04 2.19
2 1.3230E � 03 1.9539E � 04 2.76 2.5891E � 05 2.92
3 1.0811E � 04 6.6072E � 06 4.03 8.3836E � 07 2.98
4 1.0052E � 05 3.3676E � 07 4.90 1.0690E � 08 4.98

Scalar/sBR 1 1.0116E � 02 2.1906E � 03 2.21 4.9405E � 04 2.15
2 9.8322E � 04 1.3377E � 04 2.88 1.7206E � 05 2.96
3 9.3879E � 05 5.7200E � 06 4.04 3.5945E � 07 3.99
4 7.0653E � 06 2.3228E � 07 4.93 7.5176E � 09 4.95

Scalar/LDG 1 1.0128E � 02 2.1932E � 03 2.21 4.9361E � 04 2.15
2 9.8134E � 04 1.3328E � 04 2.88 1.7180E � 05 2.96
3 9.4113E � 05 5.7090E � 06 4.04 3.5769E � 07 4.00
4 7.0674E � 06 2.3552E � 07 4.91 7.6665E � 09 4.94

L1 Scalar/BR 1 1.7617E � 02 5.6046E � 03 1.65 1.2268E � 03 2.19
2 3.0141E � 03 3.9179E � 04 2.94 5.5468E � 05 2.82
3 2.8636E � 04 2.5172E � 05 3.51 2.6100E � 06 3.27
4 3.3832E � 05 8.7677E � 07 5.27 2.9137E � 08 4.91

Scalar/sBR 1 1.6093E � 02 5.8062E � 03 1.47 1.5763E � 03 1.88
2 4.1474E � 03 5.7118E � 04 2.86 5.9436E � 05 3.26
3 4.0362E � 04 3.7917E � 05 3.41 2.3903E � 06 3.99
4 4.8363E � 05 1.7865E � 06 4.76 4.7637E � 08 5.23

Scalar/LDG 1 1.6219E � 02 5.8982E � 03 1.46 1.5866E � 03 1.89
2 4.1902E � 03 5.5147E � 04 2.93 5.8349E � 05 3.24
3 4.3846E � 04 4.0372E � 05 3.44 2.4660E � 06 4.03
4 4.8400E � 05 1.6822E � 06 4.85 4.6965E � 08 5.16
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DG formulation clearly makes a difference. The sBR and LDG fluxes give optimal convergence of order
P + 1 for both odd and even P, as expected since the penalty terms are of order h�1 [5]. As seen in other
work [7] the BR flux, which lacks a penalty term, gives optimal convergence of order P + 1 for even P, but
for odd P it can degenerate to order P.

As the stencil of the LDG flux is at most 6 elements, compared to 10 elements of the BR and sBR fluxes,
a theoretical upper bound of the storage ratio is 0.6. In Table 5, we present the storage and CPU ratios. We
see that the sBR does not require any additional storage and that the storage ratio of the LDG flux is close
to the theoretical bound. The benefit of the small Nnz of the LDG flux also carries over into the computa-
tional time which is smaller per time step than for the BR and sBR fluxes.



Table 5
Ratios of Nnz and CPU time relative the scalar method using the BR flux

Method P N = 16 N = 64 N = 256

r(Nnz) r(CPU) r(Nnz) r(CPU) r(Nnz) r(CPU)

Scalar/sBR 1 1.04 1.06 1.00 1.03 1.00 1.02
2 1.00 1.00 1.00 1.02 1.00 1.07
3 1.00 1.01 1.00 1.01 1.00 1.09
4 1.00 1.00 1.00 0.95 1.00 1.05

Scalar/LDG 1 0.68 1.01 0.63 0.97 0.61 0.95
2 0.62 0.86 0.63 0.74 0.62 0.85
3 0.62 0.83 0.63 0.86 0.62 0.77
4 0.61 0.77 0.63 0.84 0.62 0.69
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4.3. Influence of the stabilisation parameter

We examine the results obtained from the scalar method with sBR and LDG fluxes using a parameter in
the interval 10�3

6 g 6 103. Fig. 4 shows the ratios of the errors between the fluxes using penalty term and
the BR flux (no stabilisation), as a function of the stabilisation parameter.
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Fig. 4. Ratios of the L2 and L1 errors for the H-component (N = 64): (a,b) sBR and (c,d) LDG.
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We see that the effect of the penalty term is very different for the sBR and LDG fluxes, although the
results become more similar as g increases. For g > 102 the results are fairly equivalent for the two fluxes.
For large g we also see that the penalty term is beneficial in the L2 norm but not in the L1 norm.

Not surprisingly, for small g the sBR flux approaches the results of the BR flux. However, the LDG flux
gives relatively bad results for g < 101. This is due to the ‘‘constant-in-time’’ approximation of the implicit
matrix.

4.4. Comparison with finite differences

In this section, the DG models are compared against two finite difference (FD) models – based on the
coupled and scalar methods, respectively, for the linearized Boussinesq equations. We adopt the for en-
hanced Boussinesq-type equations popular FD scheme proposed by Wei and Kirby [45]. In order to avoid
truncation terms in the form of third-order derivatives, the advective terms are approximated to fourth or-
der in space by a centred five-point stencil, while higher-order spatial derivatives are resolved using centred
differences of second-order accuracy. We refer to [45] for a full description of the finite differences em-
ployed. As for the DG models the semi-discrete equations are advanced in time using the third-order
Runge–Kutta scheme and the resulting sparse matrix system is solved using UMFPACK.

For the FD models the computational domain is uniformly discretized with a grid size h and in Table 6
we present the L1 error and order of convergence of the models. We see that the models are quite accurate,
with the coupled method giving results being generally an order of magnitude better. Although the schemes
are formally second-order accurate in space, the smoothness and weak dispersion of the standing wave case
gives that the leading truncation term generally stems from the fourth-order differences – explaining the
convergence of order 4.

For the finite difference models the r(Nnz) ratio approaches 2.8 and the r(CPU) ratio is roughly 5 (using
the finite difference model based on the scalar approach as reference), indicating that the scalar method is
potentially beneficial also for FD Boussinesq models.

We compare the scalar DG (using the BR-flux) and FD model in terms of efficiency. In Fig. 5 we plot
CPU times as a function of accuracy for three different integration times: 1, 10 and 100 wave periods. Here,
we emphasis that the time steps have been chosen to be the maximum value not influencing the total error,
i.e., temporal errors are an order of magnitude less than spatial discretization errors.

Comparing the FD model and the DG model using P = 3, the FD model is substantially more efficient
for short integration times. However, as the integration time increases the DG method becomes the most
efficient method. This is caused by the favourable dispersion properties of the finite element method [20,37].
Additionally, Fig. 5 demonstrates that there are, generally speaking, gains in CPU time using higher-order
polynomials compared to lower-order and that p-type refinement is more beneficial than h-type refinement,
see also [24].

The results presented in Fig. 5 are in no way to be read as fully conclusive, changing time stepping
scheme, using staggered grids, etc., will naturally influence the results. Nevertheless, it indicates that the
high-order DG method is competitive for long-time integration and highly accurate results, even in simple
Table 6
L1 error and order of convergence for the H-component for the finite difference schemes

Method h = 5 m h = 2.5 m h = 1.25 m

Error Error Order Error Order

Coupled 4.6414E � 06 3.8855E � 07 3.58 2.5985E � 08 3.90
Scalar 4.9790E � 05 3.3161E � 06 3.91 2.1049E � 07 3.98
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geometries. For complex geometries the flexibility of unstructured meshes will further benefit the DG
method.
5. Computational examples

5.1. Propagation of a solitary wave

Consider a solitary wave of amplitude 0.1 m propagating in a channel with an undisturbed water depth
of 1.0 m. The computational domain is 100 · 50 m and all boundaries are treated as walls. The solitary
wave is initially located at x = 20 m and the shape is given by the sech-profile solution [45]. The domain
is divided into 64 unstructured elements, see Fig. 6. The solution was approximated using a P = 8 order
polynomial expansion and integrated for 20 s using 1000 time steps.

Fig. 7 shows the computed water depths in a slice through the centreline, y = 25 m, compared to the
approximate analytical solutions. As can be seen in these plots there is a general good agreement (the small
amplitude trailing waves are not caused by under resolution, but is due to the non-exact initial condition, as
discussed in [45]).
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Fig. 6. Computational mesh for the solitary wave case.
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Fig. 7. Analytical (solid line) and computed (dots) solitary wave propagation along the centreline.
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Fig. 8. Computational mesh for the scattering of a solitary wave case.

Fig. 9. Solitary wave on a cylinder: (a) t = 4.5 s; (b) t = 5.5 s; (c) t = 6.5 s; (d) t = 8.5 s; (e) t = 10.5 s; and (f) t = 12.5 s.
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5.2. Scattering of a solitary wave by a vertical cylinder

The scattering of solitary waves by a vertical cylinder has been computed using Boussinesq models in
[44,2,1,47]. We have a rectangular domain �25 6 x 6 50 and �19.2 6 y 6 19.2 m. A cylinder with a diam-
eter of 4 m is located at x = 17 and y = 0 m. The domain is discretized into 552 triangles with P = 5, see
Fig. 8. Note that the edges aligned on the cylinder boundary are curved, see e.g. [22] for a description
on the implementation of curved boundaries. The undisturbed water depth is d = 1.0 m and the solitary
wave (with 0.1 m amplitude) is initially located at x = 0 m. The initial solitary wave profile is approximated
as in the previous case. The simulation is run for 12.5 s using 2500 time steps.

Fig. 9 shows snapshots of the water depth. At around 4 s the wave starts to run-up on the cylinder and at
t = 6.5 s the backscattering is evident. Later we see the diffraction and reflection of the scattered waves. We
also note that the solitary wave recovers its pre-impact shape.

In Fig. 10, we demonstrate the gain in accuracy by using curved boundaries. Approximating the cylinder
with straight sided boundaries generates small scale numerical oscillations. Approximating the cylinder by
curved boundaries the solution is smooth.
Fig. 10. Contour plots of the velocity u around the cylinder at t = 4.5 s (a,b) and t = 5.5 s (c,d). Curved edges: (a) and (c). Straight
edges: (b) and (d).
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5.3. Regular waves over a semicircular shoal

For this case we can compare against experimental data [46]. We have a rectangular domain of size
30 · 6.096 m with wall boundaries at y = 0 and 6.096 m. At x = 0 m there is an inflow boundary while
at x = 30 m we have an open boundary. At the inflow and open boundaries we have applied 3 m wide relax-
ation zones. The depth in the domain is given by:
Fig. 11
elevati
KðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:096y � y2

p
; ð50aÞ

dðxÞ ¼
0:4572; x 6 10:67� K;

0:4572þ 0:04 10:67� K� xð Þ; 10:67� K < x < 18:29� K;

0:1524; x P 18:29� K.

8><>: ð50bÞ
The incoming linear waves are given inside the relaxation zone as
fpðx; tÞ ¼ a sinðkx� xtÞ; ð51aÞ

upðx; tÞ ¼ a
x
kd

sinðkx� xtÞ; ð51bÞ

vpðx; tÞ ¼ 0. ð51cÞ
Here the incoming waves have an amplitude of 0.0075 m and a wave period of 2 s.
The domain is decomposed into 386 elements of order P = 6. The simulation is run for 50 s using 5000

time steps. In Fig. 11, we show the surface elevation after 50 s. In addition to the obvious shoaling, the
semicircular shoal focus the waves to the centre. In Fig. 12, we compare the amplitudes of the first three
harmonics obtained from the model with experimental data. The harmonics from the model were computed
from time series sampled at vertices aligned on the centreline, using the last five wave periods of the sim-
ulation. The harmonics compare fairly well with the experimental data. The computed solutions are similar
to results reported in the literature [30,40].
. Snapshot of surface elevation after 50 s shown over the bottom topography (compared to the x and y scales are the surface
on exaggerated 100 times and the depth 20 times).
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Fig. 12. Wave amplitude for first, second and third harmonic along the centreline.
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6. Conclusions

We have presented triangular spectral/hp discontinuous Galerkin methods for modelling the propaga-
tion and evolution of weakly nonlinear and dispersive water waves over variable bottom topography.
We used standard Boussinesq equations, expressed in conservative variables, which are valid for a water
depth to deep water wavelength ratio (d/L0) less than 0.22.

We investigated two different solution approaches:

� A coupled method in which the coupled momentum equations were directly discretized. This results in
an implicit matrix of size 2Ndof · 2Ndof.

� A scalar method in which the momentum equations are rewritten into a scalar wave continuity equation
of advection–diffusion type. This is achieved by introducing the time rate of change of momentum diver-
gence, z = $ Æ ot(Hu), as the dependent variable. The resulting implicit matrix becomes Ndof · Ndof. The
original variables are recovered in a subsequent step.

We observed that the two approaches gave identical results in terms of accuracy, convergence and
restriction on the time step for the DG models. However, the scalar method was more CPU efficient
and required less memory to store the implicit matrix. As the polynomial order is increased in the spec-
tral/hp discretization, the portion of the total CPU time used for the sparse solve increases. Subsequently,
the efficiency of the DG scalar method increases with increasing order as the overhead of the recovery step
and numerical flux evaluations becomes less significant.

Three formulations of the dispersive flux were considered and these all behaved as expected. The sBR
and LDG fluxes were shown to give optimal convergence, P + 1, for both odd and even orders. The BR
flux, which lacks a penalty term, sometimes degenerated to sub-optimal convergence for odd P. As the
LDG has a smaller stencil, compared to stencils of the BR and sBR fluxes, the LDG requires less storage
and less CPU time per time step than the other two fluxes. However, the BR and sBR fluxes are concep-
tually easier and allow for a larger time step.

Finally, we compared the spectral/hp DG model against a finite difference model. It was found that the
finite difference model was superior for low-accuracy and short integration times. For long-time integration
and for highly accurate results the high-order DG method was the most efficient technique, even for a sim-
ple geometry. We also note that the spectral/hp element methods permits very general discretization of com-
plex and curved geometries.
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